Астрофизика в XIX веке

Девятнадцатый век — это век становления и быстрого развития ещё одной важной области астрономии — астрофизики. К тому времени в сферу внимания учёных попали принципы устройства и эволюции небесных тел, физика процессов, происходящих в космическом пространстве. От физики новая наука взяла методы изучения, а от астрономии — необъятное поле исследований, о котором физики могли только мечтать.
Термин «астрофизика» появился в середине 60-х гг. XIX в. «Крёстным отцом» астрофизики был немецкий астроном Иоганн Карл Фридрих Цёлльнер (1834-1882), профессор Лейпцигского университета.
В отличие от небесной механики, год рождения которой точно известен (1687-й), назвать дату «появления на свет» астрофизики не так легко. Она зарождалась постепенно, в течение первой половины XIX в.

СПЕКТРАЛЬНЫЙ АНАЛИЗ — СТЕРЖЕНЬ АСТРОФИЗИКИ

В 1802 г. английский физик Уильям Хаид Волластон (1766-1828), открывший годом ранее ультрафиолетовые лучи, построил спектроскоп, в котором впереди стеклянной призмы параллельно её ребру располагалась узкая щель. Наведя прибор на Солнце, он заметил, что солнечный спектр пересекают узкие тёмные линии.
Волластон тогда не понял смысла своего открытия и не придал ему особого значения. Через 12 лет, в 1814г. немецкий физик Йозеф Фра-унгофер (1787-1826) вновь обнаружил в солнечном спектре тёмные линии, но в отличие от Волластона сумел правильно объяснить их поглощением лучей газами атмосферы Солнца. Используя явление дифракции света, он измерил длины волн наблюдаемых линий, которые получили с тех пор название фраунгофе-ровых.
В 1833 г. шотландский физик Дэвид Брюстер (1781-1868), известный своими исследованиями поляризации света, обратил внимание на группу полос в солнечном спектре, интенсивность которых увеличивалась по мере того, как Солнце опускалось к горизонту. Прошло почти 30 лет, прежде чем в 1862 г. выдающийся французский астрофизик Пьер Жюль Сезар Жансён (1824-1907) дал им правильное объяснение: эти полосы, получившие название теллурических (от лат. telluris — «земля»), вызваны поглощением солнечных лучей газами земной атмосферы.
К середине XIX в. физики уже довольно хорошо изучили спектры светящихся газов. Так, было установлено, что свечение паров натрия порождает яркую жёлтую линию. Однако на том же месте в спектре Солнца наблюдалась тёмная линия. Что бы это значило?
Решить этот вопрос в 1859 г. взялись выдающийся немецкий физик Густав Кирхгоф (1824-1887) и его коллега, известный химик Роберт Бун-зен (1811-1899). Сравнивая длины волн фраунгоферовых линий в спектре Солнца и линий излучения паров различных веществ, Кирхгоф и Бун-зен обнаружили на Солнце натрий, железо, магний, кальций, хром и другие металлы. Каждый раз светящимся лабораторным линиям земных газов соответствовали тёмные линии в спектре Солнца. В 1862 г. шведский физик и астроном Андрее Йонас Ангстрем (1814-1874), ещё один из основоположников спектроскопии (кстати, его именем названа единица длины, ангстрем: 1 А=Ю~10 м), обнаружил в солнечном спектре линии самого распространённого в природе элемента — водорода. В 1869 г. он же, измерив с большой точностью длины волн нескольких тысяч линий, составил первый подробный атлас спектра Солнца.
18 августа 1868 г. французский астрофизик Пьер Жансен, наблюдая полное солнечное затмение, заметил яркую жёлтую линию в спектре Солнца вблизи двойной линии натрия. Её приписали неизвестному на Земле химическому элементу гелию (от греч. «хелиос» — «солнце»). Действительно, на Земле гелий был впервые найден в газах, выделявшихся при нагревании минерала клевеита, только в 1895 г., так что он вполне оправдал своё «внеземное» название.
Успехи спектроскопии Солнца стимулировали учёных применять спектральный анализ к изучению звёзд. Выдающаяся роль в развитии звёздной спектроскопии по праву принадлежит итальянскому астрофизику Анджело Сёкки (1818-1878). В 1863-1868 гг. он изучил спектры 4 тыс. звёзд и построил первую классификацию звёздных спектров, разделив их на четыре класса. Его классификация была принята всеми астрономами и применялась до введения в начале XX в. Гарвардской классификации. Одновременно с Уильямом Хёггинсом Секки выполнил первые спектральные наблюдения планет, причём он обнаружил в красной части спектра Юпитера широкую тёмную полосу, принадлежавшую, как выяснилось впоследствии, метану.
Немалый вклад в развитие астро-спектроскопии внёс соотечественник Секки Джованни Донати (1826-1873), имя которого обычно связывают с открытой им в 1858 г. и названной в его честь яркой и очень красивой кометой. Донати первым получил её спектр и отождествил наблюдаемые в нём полосы и линии. Он изучал спектры Солнца, звёзд, солнечных хромосферы и короны, а также полярных сияний.
Уильям Хёггинс (1824-1910) установил сходство спектров многих звёзд со спектром Солнца. Он показал, что свет испускается его раскалённой поверхностью, поглощаясь после этого газами солнечной атмосферы. Стало ясно, почему линии элементов в спектре Солнца и звёзд, как правило, тёмные, а не яркие. Хёггинс впервые получил и исследовал спектры газовых туманностей, состоящие из отдельных линий излучения. Это и доказало, что они газовые.
Хёггинс впервые изучил спектр новой звезды, а именно новой Северной Короны, вспыхнувшей в 1866 г., и обнаружил существование вокруг звезды расширяющейся газовой оболочки. Одним из первых он использовал для определения скоростей звёзд по лучу зрения принцип Доплера — Физо (его часто называют эффектом Доплера).
Незадолго до этого, в 1842 г., австрийский физик Кристиан Доплер (1803-1853) теоретически доказал, что частота звуковых и световых колебаний, воспринимаемых наблюдателем, зависит от скорости приближения или удаления их источника. Высота тона гудка локомотива, например, резко меняется (в сторону понижения), когда приближающийся поезд проезжает мимо нас и начинает удаляться.
Выдающийся французский физик Арман Ипполит Луи Физо (1819- 1896) в 1848 г. проверил это явление для лучей света в лаборатории. Он же предложил использовать его для определения скоростей звёзд по лучу зрения, так называемых лучевых скоростей, — по смещению спектральных линий к фиолетовому концу спектра (в случае приближения источника) или к красному (в случае его удаления). В 1868 г. Хёггинс таким способом измерил лучевую скорость Сириуса. Оказалось, что он приближается к Земле со скоростью примерно 8 км/с.
Последовательное применение принципа Доплера — Физо в астрономии привело к ряду замечательных открытий. В 1889 г. директор Гарвардской обсерватории (США) Эдуард Чарлз Пикеринг (1846-1919) обнаружил раздвоение линий в спектре Ми-цара — всем известной звезды 2-й звёздной величины в хвосте Большой Медведицы. Линии с определённым периодом то сдвигались, то раздвигались. Пикеринг понял, что это скорее всего тесная двойная система: её звёзды настолько близки друг к другу, что их нельзя различить ни в один телескоп. Однако спектральный анализ позволяет это сделать. Поскольку скорости обеих звёзд пары направлены в разные стороны, их можно определить, используя принцип Доплера — Физо (а также, конечно, и период обращения звёзд в системе).
В 1900 г. пулковский астроном Аристарх Аполлонович Белополь-ский (1854-1934) использовал этот принцип для определения скоростей и периодов вращения планет. Если поставить щель спектрографа вдоль экватора планеты, спектральные линии получат наклон (один край планеты к нам приближается, а другой — удаляется). Приложив этот метод к кольцам Сатурна, Белопольский доказал, что участки кольца обращаются вокруг планеты по законам Кеплера, а значит, состоят из множества отдельных, не связанных между собой мелких частиц, как это предполагали, исходя из теоретических соображений, Джеймс Клерк Максвелл (1831- 1879) и Софья Васильевна Ковалевская (1850-1891).
Одновременно с Белопольским такой же результат получили американский астроном Джеймс Эдуард Кйлер (1857-1900) и французский астроном Анри Деландр (1853-1948).
Примерно за год до этих исследований Белопольский обнаружил периодическое изменение лучевых скоростей у цефеид. Тогда же московский физик Николай Алексеевич Умов (1846-1915) высказал опередившую своё время мысль, что в данном случае учёные имеют дело не с двойной системой, как тогда полагали, а с пульсацией звезды.
Между тем астроспектроскопия делала всё новые и новые успехи. В 1890 г. Гарвардская астрономическая обсерватория выпустила большой каталог звёздных спектров, содержавший 10 350 звёзд до 8-й звёздной величины и до 25° южного склонения. Он был посвящён памяти Генри Дрэ-пера (1837-1882), американского любителя астрономии (по специальности врача), пионера широкого применения фотографии в астрономии. В 1872 г. он получил первую фотографию спектра звезды (спектрограмму), а в дальнейшем — спектры ярких звёзд, Луны, планет, комет и туманностей. После выхода первого тома каталога к нему не раз издавались дополнения. Общее число изученных спектров звёзд достигло 350 тыс.

ФОТОГРАФИЯ В АСТРОНОМИИ

Применение фотографии в астрономии имело громадное значение благодаря её многочисленным преимуществам перед визуальными наблюдениями.
В 1839 г. французский изобретатель Луи Жак Мандё Дагёр (1787- 1851) придумал способ получения скрытого изображения на металлической пластинке из йодистого серебра, которое он проявлял затем парами ртути. Появились первые портреты людей (дагеротипы). Директор Парижской обсерватории Доминик Франсуа Араго (1786-1853) в своём докладе Французской академии наук 19 августа 1839 г. указал на обширные перспективы применения фотографии в науке, в частности в астрономии. Уже в 1840 г. были получены первые дагеротипы Солнца и Луны, затем звёзд, солнечной короны, спектра Солнца.
Большим недостатком дагероти-пов была невозможность их тиражирования. Дагеротип получался в одном экземпляре, и, чтобы получить другой, надо было снимать вторично. В 1851 г. англичанин Ф. Скотт-Арчер придумал мокрый коллоидный способ, когда пластинки незадолго до употребления заливались слоем коллоида, содержащим йодистое серебро. Последнее и служило светочувствительным материалом.
Первые же эксперименты по фотографированию небесных тел этим способом показали значительное преимущество мокрого коллоидного способа перед дагеротипным. Время экспозиций сократились более чем в 100 раз, изображения содержали многочисленные детали.
Самых больших успехов в применении мокрого коллоидного способа достиг английский астроном-любитель Варрён Деларю (1815- 1889). Будучи владельцем бумажной фабрики, он на свои средства построил обсерваторию близ Лондона и хороший телескоп, с которым и проводил фотографирование. По его предложению Британская астрономическая ассоциация построила в Кью специальную обсерваторию и прибор для фотографирования Солнца — фотогелиограф.
В 1850 г. Уильям и Джордж Бонды, отец и сын, впервые сделали фотографию звезды (Веги). В 1872 г. Генри Дрэпером была получена её первая спектрограмма, на которой были видны линии поглощения. Фотография всё больше проникала в практику астрономических исследований. В 1891 г. с её помощью была открыта первая малая планета. Это была 323 Бруция. Постепенно совершенствовалась техника фотографирования, улучшались фотоматериалы. Для фотографирования стали доступны жёлтая, красная и инфракрасная области спектра.
Ещё в древности астрономы подразделяли звёзды по блеску на шесть классов — звёздных величин. Эта величина не имеет никакого отношения к размерам звезды, она характеризует только количество света. В 1857 г. английский астроном Норман Роберт Погсон (1829-1891) предложил употребляемую и поныне шкалу звёздных величин, в которой разности в одну звёздную величину соответствует отношение блеска, составляющее 2,512 раза. Число это выбрано для удобства, потому что 2,5125 = 100. Разности в 5 звёздных величин соответствует отношение блеска ровно в 100 раз, а для разности, например, в 15 величин оно равно 1 млн. Начались точные определения блеска звёзд. Для этого применялись специальные приборы — фотометры. Благодаря этим методам стали возможными точные наблюдения изменений блеска переменных звёзд.
Наблюдательная астрофизика бурно развивалась и в XX в. Но в этом веке её впервые начала опережать астрофизика теоретическая, охватившая единым взором всю Вселенную.