Космология

Для описания Вселенной астрономы используют математические модели, упрощённо описывающие её основные свойства. Таких моделей может быть много, но все они похожи в том, что рассматривают расширяющуюся Вселенную, в которой действуют известные законы физики. Факт расширения Вселенной означает, что наш мир не был одинаковым во все времена.

ПУТЕШЕСТВИЕ В ПРОШЛОЕ

Мысленно переносясь в прошлое, можно найти момент, когда расстояние между любыми двумя галактиками было столь малым, что они «касались» друг друга. А продолжив это путешествие во времени, мы неизбежно придём к такому моменту, когда вся доступная наблюдениям область Вселенной формально была стянута в точку, а плотность её была бесконечно большой! Разумеется, физически это невозможно, но в рамках модели допустимо говорить о «времени жизни» Вселенной как времени, прошедшем с момента существования бесконечно большой (или просто очень большой, но ещё имеющей физический смысл) плотности. Это время, часто называемое возрастам. Вселенной, оказывается около 12-15 млрд лет. Если наши математические модели верно описывают реальную Вселенную, то среди наблюдаемых астрономических объектов не должно быть таких, возраст которых превосходил бы возраст Вселенной. И действительно, возраст самых старых звёзд как нашей, так и других галактик не больше 15 млрд лет.
Поскольку любой сигнал, несущий информацию, не может передаваться со скоростью больше скорости света (с = 300 000 км/с), конечный «возраст» Вселенной позволяет условно говорить и о размере Вселенной как о размере области, из которой информация может дойти до наблюдателя (например, до нас с вами) за время, прошедшее с момента начала расширения. Никакое совершенствование техники не позволит заглянуть ещё дальше. Это предельное расстояние, до которого в принципе могут «дотянуться» наши наблюдения. В честь Эд-вина Хаббла его называют хабблов-ским радиусом. В настоящее время оно составляет около 4000 Мпк.
Как мы уже сказали, понятие радиуса Вселенной достаточно условно: реальная Вселенная безгранична и нигде не кончается. Ясно, что «горизонт» любого наблюдателя раздвигается со скоростью света всё дальше и дальше. Из-за конечности скорости света величина красного смещения в спектре далёкой галактики одновременно является и мерой расстояния до неё, и мерой времени, прошедшего с момента испускания ею того излучения, которое мы сейчас улавливаем. Наблюдая всё более и более далёкие галактики, мы заглядываем в их прошлое, видим их такими, какими они были миллионы и миллиарды лет назад.

ОДНОРОДНАЯ ВСЕЛЕННАЯ

Из наблюдений вытекает странный на первый взгляд вывод о том, что Вселенная в больших масштабах однородна. Это означает, что, переходя ко всё большим объёмам пространства, мы наблюдаем всё более однородную картину распределения вещества. Если взять, например, небольшой объём — 10 пк5 — в окрестностях Солнца, в нём окажется несколько звёзд и весьма разреженная межзвёздная плазма, а в соседних 10 пк^ мы вообще можем не обнаружить ни одной звезды. Это говорит о неоднородности распределения вещества в малых объёмах Вселенной. Но куб со стороной 100 млн парсек даст нам примерно одну и ту же картину в любом месте наблюдаемой части Вселенной. Внутри таких объёмов число галактик и их скоплений будет почти одинаковым.
Мысленно «размазав» все галактики по этим объёмам, мы получим одинаковую среднюю плотность вещества. Её значение является одним из важнейших параметров, характеризующих Вселенную. Однородность Вселенной сильно упрощает её математическое моделирование.

РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ

В расширяющейся Вселенной средняя плотность вещества зависит от времени — в прошлом плотность была больше. Однако при расширении изменяется не только плотность, но и тепловая энергия вещества (газ при расширении остывает!). Это наводит на мысль, что Вселенная на ранней стадии расширения была не только плотной, но и горячей. Такую модель впервые предложил Георгий Гамов в конце 40-х гг. Как следствие, в наше время должно наблюдаться остаточное излучение (его называют реликтовым), дошедшее до нас из далёкой эпохи, когда дозвёздную Вселенную заполнял горячий газ.
Гамов предсказал, что спектр реликтового излучения должен быть точно таким же, как у излучения совершенно непрозрачного тела (физики говорят — абсолютно чёрного тела) с температурой в несколько Кельвинов. От излучения звёзд и галактик оно должно отличаться именно своим специфическим видом спектра и к тому же одинаковой интенсивностью во всех направлениях на небе, т. е. высокой степенью изотропии. И действительно, такое излучение открыли американские радиоастрономы Арно Пензиас и Роберт Уилсон в 1965 г. Его температура оказалась равной 2,73 К, что близко к предсказанной величине. Тем самым гипотеза «горячей Вселенной» получила наблюдательное обоснование. Отметим, что максимум в спектре реликтового излучения приходится на миллиметровую область радиоволн.

СУДЬБА ВСЕЛЕННОЙ

Космологические модели приводят к выводу, что судьба расширяющейся Вселенной зависит только от средней плотности заполняющего её вещества и от значения постоянной Хаббла. Если средняя плотность равна или ниже некоторой критической плотности, расширение Вселенной будет продолжаться вечно. Если же плотность окажется выше критической, то расширение рано или поздно остановится и сменится сжатием. Красное смещение линий в спектрах галактик тогда обратится в фиолетовое, поскольку расстояния между галактиками будут уменьшаться. Чему же равна эта таинственная критическая плотность мира? Оказалось, что значение её определяется только современным значением постоянной Хаббла (Но) и составляет ничтожную величину — около Ю’29 г/см3, или 10’5 атомных единиц массы в каждом кубическом сантиметре. При такой плотности грамм вещества содержится в кубе со стороной около 40 тыс. километров!
Определить точно постоянную Хаббла непросто. Галактики могут иметь довольно высокие случайныескорости (до 1000-2000 км/с), никак не связанные с космологическим расширением. Чтобы вычислить постоянную Хаббла, приходится измерять красные смещения не близких, а достаточно далёких галактик, расстояния до которых установить очень трудно. По современным оценкам, наиболее вероятное значение Но лежит в интервале 60-80 км/(с-Мпк).
Определить из наблюдений истинную среднюю плотность материи Вселенной, оказывается, ещё сложнее, чем найти постоянную Хаббла и вычислить критическую плотность. Из астрономических наблюдений следует, что средняя плотность всего видимого вещества — звёзд, пыли и межзвёздного газа — не превышает 10% от критической плотности. Однако помимо наблюдаемого вещества во Вселенной, безусловно, присутствует и загадочное невидимое, или тёмное вещество, ничем не проявляющее себя, кроме гравитационного поля. Измерить плотность тёмного вещества — задача чрезвычайно сложная. Многие теоретические соображения заставляют думать, что плотность Вселенной с учётом тёмного вещества должна быть равна критической или немного ниже её. Этот важнейший космологический вопрос до сих пор остаётся открытым.

ДА БУДЕТ ВЕЩЕСТВО!

Каждый кубический сантиметр пространства содержит около 500 реликтовых фотонов. Вещества на этот же объём приходится гораздо меньше: около 10’6 барионов (так называют тяжёлые элементарные частицы, в том числе протоны и нейтроны). Поскольку фотоны никуда не исчезают (пространство между галактиками прозрачно), отношение числа фотонов к числу барионов в ходе расширения Вселенной сохраняется. Но энергия фотонов со временем уменьшается из-за красного смещения. Следовательно, когда-то в прошлом плотность энергии излучения была больше плотности энергии обычных частиц вещества. Это означает, что до определённого момента фотоны не только числом, но и «массой» (масса — это просто энергия, делённая на квадрат скорости света) превосходили барионы. В те времена излучение полностью определяло характер расширения Вселенной. Об этой эпохе говорят как о радиационной стадии в эволюции Вселенной. На этой стадии температура вещества и излучения была одинаковой.
Но в один прекрасный момент, примерно через миллион лет после начала расширения Вселенной, всё изменилось: произошёл переход от радиационной стадии к стадии вещества. Это событие называют моментом регсои^мнд^им. Температура тогда понизилась до нескольких тысяч градусов. Из атомной физики известно, что при такой температуре начинается объединение (рекомбинация) электронов, бывших до этого свободными частицами, с протонами и ядрами гелия. Именно на этой стадии во Вселенной началось образование атомов, преимущественно водорода и гелия.
Если до рекомбинации ионизованное вещество и излучение активно взаимодействовали друг с другом, то после неё ситуация резко изменилась: кванты света почти перестали «замечать» нейтральные атомы. Вселенная стала прозрачной для излучения, которое начало путешествовать свободно. Именно это излучение улавливаем мы сейчас как реликтовое. Образно говоря, кванты реликтового излучения «запечатлели» эпоху рекомбинации и несут прямую информацию о далёком прошлом. Правда, с тех пор фотоны «покраснели» из-за расширения Вселенной и уменьшили свою энергию примерно в 1000 раз.
После рекомбинации вещество впервые начало эволюционировать самостоятельно, независимо от излучения, и в нём стали появляться уплотнения — зародыши будущих галактик и их скоплений. Вот почему так важны для учёных эксперименты по изучению свойств реликтового излучения — его спектра и пространственных неоднородностей (флуктуации). Их усилия не пропали даром: в начале 90-х гг. российский космический эксперимент «Реликт-2″ и американский «Кобе» обнаружили очень маленькие различия температуры реликтового излучения и соседних участков неба. Величина отклонения от средней температуры (2,73 К) составляет всего около тысячной доли процента! Эти вариации температуры несут информацию об отклонении плотности вещества от среднего значения в эпоху рекомбинации. Именно вариации плотности впоследствии привели к образованию наблюдаемых во Вселенной крупномасштабных структур, скоплений галактик и отдельных галактик.
Сразу после рекомбинации ещё не было ни звёзд, ни галактик, ни других космических объектов; вещество было рассеяно во Вселенной почти равномерно. Причина, по которой из однородной среды образовались массивные тела (звёзды, планеты, галактики и т. д.) кроется в силе гравитации. Там, где плотность была чуть выше средней, сильнее было и притяжение, а значит, более плотные образования становились ещё плотнее. И наоборот, области пониженной плотности делались всё разреженнее, поскольку вещество из них уходило в более плотные области. Таким образом, изначально почти однородная среда со временем разделилась на отдельные «облака», из которых сформировались галактики.
По современным представлениям, первые галактики должны были образоваться в эпоху, которая соответствует красным смещениям z я; 4-8 (напомним, что красным смещением называют изменение длины волны электромагнитного излучения по отношению к исходной длине волны). Наблюдения очень далёких галактик с большими красными смещениями подтверждают, что это наиболее молодые объекты, которые мы видим вскоре после их рождения.

ПЕРВЫЕ СЕКУНДЫ И МИНУТЫ

Итак, наблюдая реликтовое излучение, мы углубляемся в прошлое Вселенной. А есть ли шанс заглянуть ещё дальше, в эпоху, предшествовавшую рекомбинации? Ясно, что с помощью электромагнитного излучения этого сделать нельзя, ведь до рекомбинации Вселенная была непрозрачной для квантов света. Пока можно лишь предполагать, что происходило в ранней Вселенной.
Что же было в самом начале? Согласно общей теории относительности, любой вид давления порождает силу тяготения. До момента рекомбинации именно давление электромагнитного излучения в основном создавало гравитационное поле, тормозившее расширение Вселенной. На этой стадии температура изменялась обратно пропорционально квадратному корню из времени, прошедшего с начала расширения:
При малых значениях t температура Вселенной была столь высока, что энергии фотонов хватало для рождения пар всех известных частиц и античастиц.
Рассмотрим последовательно различные стадии расширения Вселенной. Как известно, частицы и античастицы с массой покоя m рождаются электромагнитным полем, если энергия фотонов превышает энергию покоя 2тс2 данного сорта частиц (с — скорость света). При Т » Ю^ К во Вселенной рождались и гибли (аннигилировали) пары различных частиц и их античастиц: протоны, нейтроны, мезоны, электроны, нейтрино и др. При понижении температуры до 5 o 1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те из них, для которых «не хватило» античастиц. Фотоны, энергия которых к этому моменту стала меньше, уже не могли порождать частицы и античастицы. Как показали наблюдения реликтового фона, во Вселенной на один бари-он приходится почти 109 фотонов — продуктов аннигиляции. Значит, первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную!) от их общего числа. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.
При Т » 2 o 10Ю К с веществом перестали взаимодействовать все-проникающие нейтрино — от того момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в ходе будущих нейтринных экспериментов.
Всё, о чём мы сейчас говорили, происходило при сверхвысоких температурах в первую секунду после начала расширения Вселенной. Спустя несколько секунд после момента «рождения» Вселенной началась эпоха первичного нуклеосинтеза, когда образовывались ядра дейтерия, гелия, лития и бериллия. Она продолжалась приблизительно три минуты, а её результатом в основном стало образование ядер гелия (25% от массы водорода). Остальные элементы, более тяжёлые, чем гелий, составили ничтожно малую часть вещества — около 0,01%. Определение химического состава (особенно содержания гелия, дейтерия и лития) самых старых звёзд и межзвёздной среды молодых галактик является одним из способов проверки выводов теории горячей Вселенной.
После эпохи нуклеосинтеза и до эпохи рекомбинации (t » 106 лет) происходило спокойное расширение и остывание Вселенной, а затем — спустя сотни миллионов лет после начала расширения — появились первые галактики и звёзды.

ИНФЛЯЦИОННАЯ ВСЕЛЕННАЯ

До начала 80-х гг. в нашем рассказе здесь можно было бы поставить точку. Однако в последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть и самый начальный, «сверхплотный» период расширения Вселенной.
Оказывается, в самом начале расширения, когда температура была невероятно высока (больше 1028 К), Вселенная могла находиться в особом состоянии, при котором она расширялась с ускорением, а энергия в единице объёма оставалась постоянной. Такую стадию расширения назвали инфляционной. Подобное состояние материи возможно при одном условии — давление должно быть отрицательным! Однако возможность такого состояния материи, когда она обладает отрицательным давлением, следует из современных теорий элементарных частиц. В них предполагается существование некоторого необычного поля со странными физическими свойствами, энергия которого преобладала на самой ранней стадии расширения.
Стадия сверхбыстрого инфляционного расширения охватывала крошечный промежуток времени: она завершилась примерно к моменту («Ю^б с. Считается, что настоящее «рождение» элементарных частиц материи в том виде, в каком мы их знаем сейчас, произошло как раз по окончании инфляционной стадии и было вызвано «распадом» гипотетического поля. После этого расширение Вселенной продолжалось уже по инерции.
Гипотеза инфляционной Вселенной отвечает на целый ряд важных вопросов космологии, которые до недавнего времени считались необъяснимыми парадоксами, в частности на вопрос о причине расширения Вселенной. Если в своей истории Вселенная действительно прошла через эпоху, когда существовало большое отрицательное давление, то гравитация неизбежно должна была вызвать не притяжение, а взаимное отталкивание материальных частиц. И значит, Вселенная как целое начала быстро, взрывоподобно расширяться. Конечно, модель инфляционной Вселенной пока лишь гипотеза: даже косвенная проверка её положений требует таких приборов, которые в настоящее время просто ещё не созданы. Однако идея ускоренного расширения Вселенной на самых ранних стадиях её эволюции прочно вошла в современную космологию.
До сих пор остаётся открытым важнейший вопрос: что существовало до начала расширения Вселенной? Такая же Вселенная, как наша, но только не расширяющаяся, а сжимающаяся? Или совсем незнакомый нам мир с абсолютно иными свойствами пространства и времени? А возможно, это был мир, управляемый совершенно другими, неизвестными нам законами природы? Эти проблемы настолько сложны, что решать их придётся будущим поколениям космологов.
Подводя итог, можно сказать, что наше знание о строении и эволюции Вселенной переживает настоящую «инфляционную стадию» — время бурного роста, новых идей и важных открытий. Говоря о ранней Вселенной, мы от самых больших космических масштабов вдруг переносимся в область микромира, который описывается законами квантовой механики. Физика элементарных частиц и сверхвысоких энергий тесно переплетается в космологии с физикой гигантских астрономических систем. Самое большое и самое малое смыкаются здесь друг с другом. В этом состоит удивительная красота нашего мира, полного неожиданных взаимосвязей и глубокого единства.